Learning programming logic remains an obstacle for students from different academic fields. Considered one of the essential disciplines in the field of Science and Technology, it is vital to investigate the new tools or techniques used in the teaching and learning of Programming Language. This work presents a systematic literature review (SLR) on approaches using Mobile Learning methodology and the process of learning programming in introductory courses, including mobile applications and their evaluation and validation. We consulted three digital libraries, considering articles published from 2011 to 2022 related to Mobile Learning and Programming Learning. As a result, we found twelve mobile tools for learning or teaching programming logic. Most are free and used in universities. In addition, these tools positively affect the learning process, engagement, motivation, and retention, providing a better understanding, and improving content transmission.
The Computational Thinking (CT) teaching approach allows students to practice problem-solving in a way that they can use the Computer Science mindset. In this sense, Collaborative Learning has a lot to contribute to educational activities involving the CT. This article presents the design and evaluation of a Collaborative Learning framework for the development of CT skills in students. To design the proposed strategy, several fundamental features of the Collaborative Learning concept of the literature have been studied and sketched. The strategy was applied to middle school students through a digital games programming workshop. Data were collected by three means: (1) collecting artifacts produced during activities; (2) recording of game programming sessions; and (3) applying a structured interview to students. The data analysis showed evidence that the strategy was able to mobilize Computational Thinking skills in addition to mobilizing collaborative skills in learners.
This case study aims at ensuring preservice science teachers to acquire experience by creating paper-based mind maps (PB-MM) and digital mind maps (D-MM) in technology education and to reveal their opinions on these mind mapping techniques. A total of 32 preservice science teachers, enrolled in the undergraduate program of Science Teaching at a university in Turkey, participated in this study. During the first three weeks of the six-week study, participants created PB-MM for certain subjects in science education. For the rest of the weeks, they created D-MM by using Coggle. As data collection tool, a form, consisting of open-ended questions, was used in this study. The obtained results demonstrated that the participants generally reported positive opinions including that mind maps are beneficial and useful tools in reinforcing, assessing and visualizing learning in general, making lessons more entertaining as well as offering ease of use. It was also concluded that students can also use mind maps in teaching of other topics such as “Vitamins”, “The Earth and the Universe” and “Systems” in particular, as well as in events like meetings, presentations, brainstorming. Advantages of D-MM were listed as the possibility of adding multimedia material, ease of correction processes and the visual richness, while its disadvantage was listed as experiencing technical problems. PB-MM contribute to psychomotor development of students as well as learning by performing/experiencing. The difficulty in processes such as deleting, editing, etc. and in adding videos and images constitute the restrictions of PB-MM technique.
Social networks are progressively being considered as an intense thought for learning. Particularly in the research area of Intelligent Tutoring Systems, they can create intuitive, versatile and customized e-learning systems which can advance the learning process by revealing the capacities and shortcomings of every learner and by customizing the correspondence by group profiling. In this paper, the primary idea is the affect recognition as an estimation of the group profiling process, given that the fact of knowing how individuals feel about specific points can be viewed as imperative for the improvement of the tutoring process. As a testbed for our research, we have built up a prototype system for recognizing the emotions of Facebook users. Users' emotions can be neutral, positive or negative. A feeling is frequently presented in unpretentious or complex ways in a status. On top of that, data assembled from Facebook regularly contain a considerable measure of noise. Indeed, the task of automatic affect recognition in online texts turns out to be more troublesome. Thus, a probabilistic approach of Rocchio classifier is utilized so that the learning process is assisted. Conclusively, the conducted experiments confirmed the usefulness of the described approach.
The role of mobile technology has significantly increased and been emphasized in English education. However, research investigating EFL teachers' attitudes and behaviors related to mobile technology has been limited in descriptive aspects of the technology, leading to misunderstandings about EFL teachers' needs. Furthermore, many prior studies have examined various aspects of electronic learning (e-learning) and technological developments of mobile learning (m-learning) in English education from the learners' perspective. Therefore, this study proposed a research model that empirically examines behaviors of EFL teacher's' m-learning acceptance by using Fred Davis's Technology Acceptance Model (TAM) as the research framework. As external variables, this research model includes instant connectivity, compatibility, interaction, content enrichment, and computer self-efficacy, influencing the perceived usefulness of TAM. Structural Equation Modeling (SEM) with the data of 189 EFL teachers was used to analyze causal relationships between external variables and TAM variables. The results provide evidence that supports the tested hypotheses. The implications of the findings suggest a new direction for future studies on m-learning.