While virtual learning environments (VLEs) present several advantages, such as space-time flexibility, they are still not including proper opportunities and resources for students to engage in collaborative activities with their peers. Recent approaches, for example, are based on resources that are not standard for VLEs or usual for students. Thus, their integration with VLEs is not simple. This paper conducted a theoretical investigation to identify strategies that could induce collaborative behaviours in students. These strategies were implemented as learning objects running in a VLE and a quasi-experimental research design was conducted with 133 students. The results show that the approach promotes collaborative interactions between students and also tend to improve their learning outcomes. Moreover, learning objects use a conceptualization that is already established over the e-learning community, simplifying their integration with VLEs.
The paper is aimed to present a methodology of learning personalisation based on applying Resource Description Framework (RDF) standard model. Research results are two-fold: first, the results of systematic literature review on Linked Data, RDF "subject-predicate-object" triples, and Web Ontology Language (OWL) application in education are presented, and, second, RDF triples-based learning personalisation methodology is proposed. The review revealed that OWL, Linked Data, and triples-based RDF standard model could be successfully used in education. On the other hand, although OWL, Linked Data approach and RDF standard model are already well-known in scientific literature, only few authors have analysed its application to personalise learning process, but many authors agree that OWL, Linked Data and RDF-based learning personalisation trends should be further analysed. The main scientific contribution of the paper is presentation of original methodology to create personalised RDF triples to further development of corresponding OWL-based ontologies and recommender system. According to this methodology, RDF-based personalisation of learning should be based on applying students' learning styles and intelligent technologies. The main advantages of this approach are analyses of interlinks between students' learning styles according to Felder-Silverman learning styles model and suitable learning components (learning objects and learning activities). There are three RDF triples used while creating the methodology: "student's learning style - requires - suitable learning objects", "student's learning style - requires - suitable learning activities", and "suitable learning activities - require - suitable learning objects". In the last triple, "suitable learning activities" being the object in the 2nd triple, becomes the subject in the 3rd triple. The methodology is based on applying pedagogically sound vocabularies of learning components (i.e. learning objects and learning activities), experts' collective intelligence to identify learning objects and learning methods / activities that are most suitable for particular students, and intelligent technologies (i.e. ontologies and recommender system). This methodology based on applying personalised RDF triples is aimed at improving learning quality and effectiveness.
The technological resources used for pedagogical innovation in the form of distance education have increasingly been incorporated into face-to-face education. This article describes the experience of the Federal University of Lavras - Brazil - with new ways to apply technology in face-to-face undergraduate courses. This paper presents (i) the strategy for the selection of course content, which was premised on the diversification of areas of knowledge and on promoting the permanent incorporation of the resources developed in the teaching-learning process, (ii) the organization of the production process of Learning Objects based on the Scrum method, (iii) the set of best practices, inspired by the management of agile software development, as well as the contextual motivation of its use.
Currently virtual learning environments (VLEs) and learning objects (LOs) repositories are under active implementation into general education and vocational training system in Lithuania. The article aims to review LOs interoperability standards development tendencies as well as to compare VLEs under existing well-developed pedagogical and technical evaluation frameworks in order to suggest the most suitable one for wider implementation to support active socio-constructivist pedagogies in in-service teacher training and overall in Lithuanian general education and vocational training systems.
Many factors influence teaching nowadays. Numbers of students are increasing, some students pay for studies and require more flexible teaching, more students have access to Internet, the learning material is changing rapidly (especially of subjects, related to information technologies), publishing industry is slow and expensive. All that stimulates usage of modern technologies in education. Virtual Learning Environments (VLEs) is one of the forms of e-learning. They open new ways of teaching and communication such as management of online learning, course delivery mechanism, communication and assessment tools, student tracking, access to electronic resources, etc. All these means correspond to the needs of contemporary teachers and students. VLEs have primarily been used for distance education but they are being used increasingly as supplement of traditional classroom based education. The author is interested in this latter aspect of VLEs.
The paper briefly reviews main types of Virtual Learning Environments and analyses the use of VLEs in Lithuania. The results of the investigation of two different learning environments - traditional (Web CT) and collaborative (FLE3) at the Vilnius Pedagogical University are also discussed in the article.