Nowadays, few professionals understand the techniques and testing criteria to systematize the software testing activity in the software industry. Towards shedding some light on such problems and promoting software testing, professors in the area have established Massive Open Online Courses as educational initiatives. However, the main limitation is the professor’s lack of supervision of students. A conversation agent called TOB-STT has been defined in trying to avoid the problem. A previous study introduced TOB-STT; however, it did not analyze its efficacy. This article addresses a controlled experiment that analyzed its efficacy and revealed it was not expressive in its current version. Therefore, we conducted an in-depth analysis to find what caused this result and provided a detailed discussion. The findings contribute to the TOB-STT since the experimental results show that improvements need to be made in the conversational agent before we use it in Massive Open Online Courses.
In this study, effectiveness of a computer science course at the secondary school level is investigated through a holistic approach addressing the dimensions of instructional content design, development, implementation and evaluation framed according to ADDIE instructional design model where evaluation part constituted the research process for the current study. The process has initiated when the computer science curriculum had major revisions in order to provide in-service teachers with necessary support and guidance. The study is carried through as a project, which lasted more than one year and both quantitative and qualitative measures were used through a sequential explanatory method approach. The intention was to investigate the whole process in detail in order to reveal the effectiveness of the process and the products. In this regard, not only teachers' perceptions but also students' developments in their perceptions of academic achievement and computational thinking, as well as correlations between the computational thinking sub-factors were investigated. The findings showed that the instructional materials and activities developed within the scope of the study, positively affected the computational thinking and academic achievement of students aged 10 and 12 years old. The teachers' weekly feedbacks regarding application structures and implementation processes were also supported the findings and revealed some more details that will be useful both for instructional designers and teachers.
Mathematical logic is a discipline used in sciences and humanities with different point of view. Although in tertiary level computer science education it has a solid place, it does not hold also for secondary level education. We present a heterogeneous study both theoretical based and empirically based which points out the key role of logic in computer science, computer science education and knowledge representation. We focus on the key contrast of semantics and syntax, the resolution principle as a leading inference technique (giving also interesting non-clausal generalization of the rule). Further we discuss the possibilities of inclusion the non-classical (many-valued) logics in education together with the original generalization of the non-clausal resolution rule into fuzzy logic. The last part describes partial results of the research concerning the secondary education in the Czech Republic especially in the mathematical logic field. The generalization of the presented ideas entails the article.
The ``digital society'' provides not only with new technology, but also with new concepts. Information plays a central role and becomes a valuable good, but knowledge cannot be reduced to information, and one aim for educators is to contribute in a ``knowledge society'', not only an ``information society''. A knowledge society is structured in networks, enriching the traditional hierarchies; a knowledge society promotes a kind of ``collective intelligence''. In such a society, open and distance learning has new dimensions and faces new challenges: collaboration and individualization, dealing with time and space, dealing with presence and distance, and contributing to lifelong learning. The Stellenbosch Declaration gives the main trends for ICT in education in a knowledge society, according to six major issues: digital solidarity, learners and lifelong learning, decision-making strategies, networking, research, teachers.
Distance learning involves a lot of work of human assistants. These assistants need to be connected for answering student doubts and questions. Intelligent agents can do part of this repetitive work because they can observe students interacting with educational courses, detect learning troubles of these students, and then suggest them some way for overcoming those troubles. However, a design problem appears with this promised possibility: how to connect educational applications with these agents. This paper presents a solution to this problem, in which both the capture of student's intentions and agent intervention for helping students are specified. These two architectural design points are defined as connection points. The first connection point is named student intentions. Student intentions define situations in which agents might help. This connection point depends on the user interface of the educational application that students are using; the agent needs to know the gestures that students could do for interpreting their intentions. The second connection point is named agent interventions. Agent interventions define the context in which agent might assist and the type of help that might give, like a suggestion or a warning. This solution is introduced in the context of one specific application for distance learning named SAVER, which is used for exemplifying each architectural design point.