Even though working with data is as important as coding for understanding and dealing with complex problems across multiple fields, it has received very little attention in the context of Computational Thinking. This paper discusses an approach for bridging the gap between Computational Thinking with Data Science by employing and studying classification as a higher-order thinking process that connects the two. To achieve that, we designed and developed an online constructionist gaming tool called SorBET which integrates coding and database design enabling students to interpret, organize, and analyze data through game play and game design. The paper presents and discusses the results of a pilot study that aimed to investigate the data practices secondary students develop through playing and modifying SorBET games, and to determine the impact of game modding on student critical engagement with CT. According to the results, students developed and used certain data practices such as data interpretation and data model design to become better players or to design an interesting classification game. Moreover, game modding process motivated students to question the original games’ content, leading them to develop a critical stance towards the game data model and representations.
In a previous publication we examined the connections between high-school computer science (CS) and computing higher education. The results were promising—students who were exposed to computing in high school were more likely to take one of the computing disciplines. However, these correlations were not necessarily causal. Possibly those students who took CS courses, and especially high-level CS courses in high school, were already a priori inclined to pursue computing education. This uncertainty led us to pursue the current research. We aimed at finding those factors that induced students to choose CS at high school and later at higher-education institutes. We present quantitative findings obtained from analyzing freshmen computing students' responses to a designated questionnaire. The findings show that not only did high-school CS studies have a major impact on students’ choice whether to study computing in higher education—it may have also improved their view of the discipline.
The goal of this literature study is to give some preliminary answers to the questions that aim to uncover the Pedagogical Content Knowledge (PCK) of Informatics Education, with focus on Programming. PCK has been defined as the knowledge that allows teachers to transform their knowledge of the subject into something accessible for their students. The core questions to uncover this knowledge are: what are the reasons to teach programming; what are the concepts we need to teach programming; what are the most common difficulties/misconceptions students encounter while learning to program; and how to teach this topic. Some of the answers found are, respectively: enhancing students' problem solving skills; programming knowledge and programming strategies; general problems of orientation; and possible ideal chains for learning computer programming. Because answers to the four questions are in a way not connected with each other, PCK being an unexplored field in Informatics Education, we need research based efforts to study this field.
Mathematical logic is a discipline used in sciences and humanities with different point of view. Although in tertiary level computer science education it has a solid place, it does not hold also for secondary level education. We present a heterogeneous study both theoretical based and empirically based which points out the key role of logic in computer science, computer science education and knowledge representation. We focus on the key contrast of semantics and syntax, the resolution principle as a leading inference technique (giving also interesting non-clausal generalization of the rule). Further we discuss the possibilities of inclusion the non-classical (many-valued) logics in education together with the original generalization of the non-clausal resolution rule into fuzzy logic. The last part describes partial results of the research concerning the secondary education in the Czech Republic especially in the mathematical logic field. The generalization of the presented ideas entails the article.
Interaction and feedback are key factors supporting the learning process. Therefore many automatic assessment and feedback systems have been developed for computer science courses during the past decade. In this paper we present a new framework, TRAKLA2, for building interactive algorithm simulation exercises. Exercises constructed in TRAKLA2 are viewed as learning objects in which students manipulate conceptual visualizations of data structures in order to simulate the working of given algorithms. The framework supports randomized input values for the assignments, as well as automatic feedback and grading of students' simulation sequences. Moreover, it supports automatic generation of model solutions as algorithm animations and the logging of statistical data about the interaction process resulting as students solve exercises. The system has been used in two universities in Finland for several courses involving over 1000 students. Student response has been very positive.