Machine Learning (ML) is becoming increasingly present in our lives. Thus, it is important to introduce ML already in High School, enabling young people to become conscious users and creators of intelligent solutions. Yet, as typically ML is taught only in higher education, there is still a lack of knowledge on how to properly teach younger students. Therefore, in this systematic literature review, we analyze findings on teaching ML in High School with regard to content, pedagogical strategy, and technology. Results show that High School students were able to understand and apply basic ML concepts, algorithms and tasks. Pedagogical strategies focusing on active problem/project-based hands-on approaches were successful in engaging students and demonstrated positive learning effects. Visual as well as text-based programming environments supported students to build ML models in an effective way. Yet, the review also identified the need for more rigorous evaluations on how to teach ML.
In today’s society, creativity plays a key role, emphasizing the importance of its development in K-12 education. Computing education may be an alternative for students to extend their creativity by solving problems and creating computational artifacts. Yet, there is little systematic evidence available to support this claim, also due to the lack of assessment models. This article presents SCORE, a model for the assessment of creativity in the context of computing education in K-12. Based on a mapping study, the model and a self-assessment questionnaire are systematically developed. The evaluation, based on 76 responses from K-12 students, indicates a high internal reliability (Cronbach’s alpha = 0.961) and confirmed the validity of the instrument suggesting only the exclusion of 3 items that do not seem to be measuring the concept. As such, the model represents a first step aiming at the systematic improvement of teaching creativity as part of computing education.
Although Machine Learning (ML) has already become part of our daily lives, few are familiar with this technology. Thus, in order to help students to understand ML, its potential, and limitations and to empower them to become creators of intelligent solutions, diverse courses for teaching ML in K-12 have emerged. Yet, a question less considered is how to assess the learning of ML. Therefore, we performed a systematic mapping identifying 27 instructional units, which also present a quantitative assessment of the students’ learning. The simplest assessments range from quizzes to performance-based assessments assessing the learning of basic ML concepts, approaches, and in some cases ethical issues and the impact of ML on lower cognitive levels. Feedback is mostly limited to the indication of the correctness of the answers and only a few assessments are automated. These results indicate a need for more rigorous and comprehensive research in this area.
The journal Informatics in Education and the conference Koli Calling are compared, starting with Simon's system for the classification of computing education papers and going on to conduct a brief bibliometric analysis of the authors of papers in both publications, including their repeat rates and the countries from which they come. The analysis finds that despite their different natures, the Lithuanian journal and the Finnish conference are highly comparable in many respects. The broad conclusion is that the two publications work well together - but it would be good to see some Lithuanian authors contributing papers to Koli Calling.
As part of a wide-ranging phenomenographic study of computing teachers, we explored their varying understandings of the lab practical class and discovered four distinct categories of description of lab practicals. We consider which of these categories appear comparable with non-lecture classes in other disciplines, and which appear distinctive to computing. An awareness of this range of approaches to conducting practical lab classes will better enable academics to consider which is best suited to their own purposes when designing courses.