Critical thinking is a fundamental skill for 21st-century citizens, and it should be promoted from elementary school and developed in computing education. However, assessing the development of critical thinking in educational contexts presents unique challenges. In this study, a systematic mapping was carried out to investigate how to assess the development of critical thinking, or some of its skills, in K-12 computing teaching. The results indicate that primary studies on the development of critical thinking in K-12 computing education are concentrated in Asian countries, mainly focusing on teaching concepts such as algorithms and programming. Moreover, the studies do not present a fixed set of critical thinking skills assessed, and the skills are selected according to specific teaching and research needs. Most of the studies adopted student self-assessment using instruments that are well-known in the literature for assessing critical thinking. Many studies measured the quality of instruments for their research, obtaining favorable results and demonstrating consistency. However, the research points to a need for more diversity in assessment methods beyond student self-assessment. The findings suggest a need for more comprehensive and diverse critical thinking assessments in K-12 computing education, covering different educational stages and computing education concepts. This research aims to guide educators and researchers in developing more effective critical thinking assessments for K-12 computing education.
Knowledge about Machine Learning is becoming essential, yet it remains a restricted privilege that may not be available to students from a low socio-economic status background. Thus, in order to provide equal opportunities, we taught ML concepts and applications to 158 middle and high school students from a low socio-economic background in Brazil. Results show that these students can understand how ML works and execute the main steps of a human-centered process for developing an image classification model. No substantial differences regarding class periods, educational stage, and sex assigned at birth were observed. The course was perceived as fun and motivating, especially to girls. Despite the limitations in this context, the results show that they can be overcome. Mitigating solutions involve partnerships between social institutions and university, an adapted pedagogical approach as well as increased on-by-one assistance. These findings can be used to guide course designs for teaching ML in the context of underprivileged students from a low socio-economic status background and thus contribute to the inclusion of these students.
Machine Learning (ML) is becoming increasingly present in our lives. Thus, it is important to introduce ML already in High School, enabling young people to become conscious users and creators of intelligent solutions. Yet, as typically ML is taught only in higher education, there is still a lack of knowledge on how to properly teach younger students. Therefore, in this systematic literature review, we analyze findings on teaching ML in High School with regard to content, pedagogical strategy, and technology. Results show that High School students were able to understand and apply basic ML concepts, algorithms and tasks. Pedagogical strategies focusing on active problem/project-based hands-on approaches were successful in engaging students and demonstrated positive learning effects. Visual as well as text-based programming environments supported students to build ML models in an effective way. Yet, the review also identified the need for more rigorous evaluations on how to teach ML.
In today’s society, creativity plays a key role, emphasizing the importance of its development in K-12 education. Computing education may be an alternative for students to extend their creativity by solving problems and creating computational artifacts. Yet, there is little systematic evidence available to support this claim, also due to the lack of assessment models. This article presents SCORE, a model for the assessment of creativity in the context of computing education in K-12. Based on a mapping study, the model and a self-assessment questionnaire are systematically developed. The evaluation, based on 76 responses from K-12 students, indicates a high internal reliability (Cronbach’s alpha = 0.961) and confirmed the validity of the instrument suggesting only the exclusion of 3 items that do not seem to be measuring the concept. As such, the model represents a first step aiming at the systematic improvement of teaching creativity as part of computing education.
Although Machine Learning (ML) has already become part of our daily lives, few are familiar with this technology. Thus, in order to help students to understand ML, its potential, and limitations and to empower them to become creators of intelligent solutions, diverse courses for teaching ML in K-12 have emerged. Yet, a question less considered is how to assess the learning of ML. Therefore, we performed a systematic mapping identifying 27 instructional units, which also present a quantitative assessment of the students’ learning. The simplest assessments range from quizzes to performance-based assessments assessing the learning of basic ML concepts, approaches, and in some cases ethical issues and the impact of ML on lower cognitive levels. Feedback is mostly limited to the indication of the correctness of the answers and only a few assessments are automated. These results indicate a need for more rigorous and comprehensive research in this area.