In this study, we aimed to investigate the impact of cooperative learning on the computational thinking skills and academic performances of middle school students in the computational problem-solving approach. We used the pretest-posttest control group design of the quasi-experimental method. In the research, computational problem-solving activities regarding 6th graders' goals of the "heat and matter" unit, were applied individually by Group 1 and cooperative learning by Group 2. These activities required students to use computational thinking skills and code using the Python programming language. The study involved 34 students from the 6th grade of a private middle school located in the capital city of Turkey. The Computational Thinking Test (CTt) and an academic achievement test were used as pre-tests and post-tests to monitor students' computational thinking skills and academic performances. Additionally, computational problem-solving activities were scored to track the progress of students' computational thinking abilities. Non-parametric Mann Whitney U and Wilcoxon T-tests were utilized to analyze the progression of pupils' computational thinking abilities and academic success, and ANCOVA was used to analyze CTt scores. Qualitative data were collected through semi-structured interviews at the end of the process to determine students' views on the computational problem-solving process. Results revealed a significant increase in students' academic achievement and computational thinking skills in both groups. A comparison of post-test scores showed no significant difference between groups. It is anticipated that the research results will make meaningful contributions to the literature concerning the progress of computational thinking skills in secondary school students.
Considerable pedagogical advantage may be gained by the integration of the different ICT tools commonly used in teaching science and technology, particularly by integrating ``real'' and ``virtual'' laboratory activities. In the context of this paper, ``real'' laboratories involve benchtop experiments utilizing data acquisition systems while ``virtual'' laboratories entail interactive simulations and animations. Examples of such integrated activities are described; namely, (i) the study of wave phenomena using sound and (ii) a study of motion in one dimension. Such integrated computerized teaching tools also provide an opportunity for a greater level of integration of different science and technology disciplines.
The paper outlines curriculum development activities that have been done in science education in the Slovak Republic as a result of an international collaboration within the frame of the Leonardo da Vinci II pilot project Computerised Laboratory in Science and Technology Teaching - ``ComLab-SciTech''. The created teaching and learning materials include integration of science curricula in two meanings: an integration of knowledge and methodology of physics, chemistry and biology, as well as an integration of various true and virtual computerised methods of experiments. The materials contain suggestions for student investigative activities, in which life science processes are studied with the use of laboratory models.